
* Greg Graham and Sinisia Veselli recently left FNAL.

SCHEMA INDEPENDENT APPLICATION SERVER DEVELOPMENT PARADIGM
A. Afaq, G. Graham*, L. Lueking, S. Veseli*, V. Sekhri

Fermi National Accelerator Laboratory
Batavia, IL 60510, USA

ABSTRACT
This paper presents a paradigm for rapid development of an application
server in a schema independent fashion. The central idea is to represent
tables as objects and use generic templates and algorithms to generate and
execute queries spanning multiple tables, at runtime. As an example,
Dataset Bookkeeping Service [1] for CMS Experiment [2] is presented.

INTRODUCTION
The idea of using Objects for database manipulation has
several different philosophies and implementations, from
Object Database Management Systems [3] (ODBMS) to
Object-Relational Mapping. Every approach has its own
limitations [4] [5] [6] and in general, such developments are
engineering intensive and time consuming. Most of the
effort is focused at identifying interesting relationships and
composing compound queries to retrieve needed
information with minimal database queries. Generally,
these queries end up being hard-coded and any maintenance
or schema change needs manual code changes.

We present here a paradigm for rapid development of an
application server in a schema independent fashion. The
emphasis is on generating Database and Query Objects
directly from a Data Definition Language (DDL) [7] file
and using them in association with a Query Object Layer to
perform database operations. Any schema
change/maintenance will only require re-running the code
generation and not any type of manual changes.

The major components of such a system are:
• Code Generator, A set of tools for generating C++

Database/Query objects.
• Set of Database/Query Objects (DO/QO) are C++ class

representation of individual tables and joins. The join
conditions are deduced from Foreign Key relations.
Developers may provide additional join conditions, if
required.

• A Query Object Layer (QOL) provides the framework
for creating runtime Objects for database interaction.

• Algorithms that generate Queries/SQL at runtime for
any type of DO/QO during a QOL invocation.

• Business Logic Layer (BLL) makes it easy to rapidly
write the Business Logic.

CODE GENERATOR
• The Code Generator parses DDL and extracts details of

all tables, their keys and relationships.

• Each table in DDL is translated into a Python object of
type rowRepresentation.

• A set of tables can be seen collectively as a “Query
Object View” (QOV). The user describes which tables
need to be included in the QOV. Describing a QOV is
a very simple configuration step which can be
performed in a few lines of Python code.

• The Code Generator figures out the details of how to
collectively look at the QOV and generates appropriate
multiRowrepresentation objects in Python.

• C++ classes are written out for each
row/multiRowrepresentation object.

• The Code Generator is developed in Python.

Figure 1: Structure of Code Generator

QUERY OBJECT LAYER
The Query Object layer hides the details of the query
generation and the database schema from the user of this
layer, as well as from the developer. The Objects that hold
the database schema information (rows and tables) are
generated by the code generator. The developer does not
need to know about the schema as such. This layer
provides simple insert and select interfaces on the C++
objects (generated table and rows). The interface

implementation is templated and can be used for any
generated row or table objects. The template interface gives
a great flexibility to incorporate any changes in the schema,
since the objects can be regenerated by the code generator
and the interface implementations remains the same.

The Organization of this layer is shown in the Figure 2.
• RowClass is the generated C++ object (class)

corresponding to a row in a specific table. The
RowClass objects inherits from a parent class
RowInterface and implements the interface for simple
setValue and getValue calls to set or get the values to
and from the RowClass.

• SchemaNConstraintsClass holds the entire schema
including the foreign keys, unique keys and other
references in a table. This class is generated, so any
changes in the schema will get reflected in this class. It
inherits from a parent class
BaseSchemaNConstraintsClass, and implements the
interface for simple getSchema, getPrimaryKeys, etc
calls to get the schema information about the table.

• SQLClass can generate the SQL statements for any
table from its schema. Its implementation is
independent of the changes in the schema.

• TableTemplateClass is a templated container that can
contain a vector of RowClass. It inherits from
TableInterface class, and implements the interface for
insert and select calls. It instantiates objects of
SchemaNContraintsClass, RowClass and SQLClass to
contain the Row data, the schema for the table and the
mechanisms to generate the SQL queries.

Figure 2: QOL Class Diagram.

DATABASE ALGORITHMS
Database algorithms are a key part of the Query Object
Layer. Algorithms are empirically evolved to handle any
kind of Insert/Select operation for a Database (Single
Table) or Query (Multi Table) Object.
These algorithms generate the required SQL, execute them
and return the results to the calling layer by storing them as
Database/Query Objects. All data exchanges between
QOL/Algorithms and user layers happen through
Database/Query Objects. After a select operation the
calling layer receives a set of Dataset/Query Objects. The
calling layer must provide a set of DO/QO for the insert
operation. Figure 3 shows an example flowchart for smart
insert operation.

DATASET BOOKKEEPING SERVICE PROTOTYPE

AS AN EXAMPLE
The Dataset Bookkeeping Service is a tool being developed
at Compact Muon Solenoid Experiment (CMS) to define,
discover and track datasets for processing event data as a
key component of Data Management System.

The user interaction with the application server is either
through a Python Web Services Interface [8] or through a
direct Python Interface. In both cases, the user provides a
set of data structures (Client Data Structures in Python) to
write into or to read from the database, and invokes an API
call. The Python interface (using SWIG [9]) translates
client data structures into appropriate QOL Table/Multi-
Table Objects in C++ and then the Business Logic Layer
performs the desired operations.

SAM Web Services [10] shows very good performance of
Web Services under various load conditions and with
different usage patterns.

The various layers in the DBS prototype are (shown in
Figure 4):
• DB Layer: Handles all the low level database

transactions using unixODBC [11].
• Query Object Layer: Creates C++ objects

corresponding to Tables and Rows in the schema and
the views configured by the user. It provides a simple
insert and select interface.

• Business Logic Layer: This layer provides
implementations corresponding to API calls. These
implementations are called Managers which instantiate
the objects from QOL and make use of the interface
provided to retrieve or insert data. Any logic about
validation or cross referencing between various table
and multi tables are done in this layer.

• Interface Layer: This layer exposes the DBS defined
API to any user of the layer. The API calls are
translated into invoking Managers in the Business

Logic Layer onto which the specified task are
delegated.

• Python Interface: Translates the Client data
structures into C++ Tables and Rows object (using
SWIG) and invokes the API from the Interface layer.

Figure 3: Insert Algorithm.

These layers can collectively be used as a plug-in inside any
standalone application or server. In DBS Web Services case
we have a SOAP Server that uses this plug-in to
communicate with the remote clients.

The whole development cycle requires only:
• Describing QOV and running the Code Generator to

produce Database and Query Objects.
• Writing appropriate Client Data Structures and their

translation into QOL Objects.
• Writing Business Logic, which is mainly the

instantiation of appropriate QOL Database/Query
Objects and invoking API calls.

The rest of tasks to interact with the database, query
generation, execution and etc. are all handled by the QOL
and BLL.

CONCLUSION
Test results from the test system built using above
mentioned development process are very promising,
following are major observations,

• There are fewer chances of making any Query
mistakes. We have several examples where a failure in
QOL actually pointed towards a mistake in the DDL
and Schema.

• The turn around time to completely incorporate all the
schema changes is short.

• The chances of executing an incorrect query are
minimal as query generation is done automatically.

• The user interface deals in terms of views (of single
and multi tables) and rows which is much simpler than
dealing with queries.

• The development cycle is simple and short since most
of the code is generated by the code generator.

• The plug-in has a simple interface and can be easily
used in any application.

Figure 4: Layers of DBS.

Figure 4: DBS Server Layers

REFERENCES

[1] Distributed Data Management in CMS, A. Fanfani, CHEP06,
Mumbai 2006

[2] http://en.wikipedia.org/wiki/Compact_Muon_Solenoid
[3] Introduction to Object-Oriented Databases. Kim, Won,

Massachusetts: The MIT Press, 1990
[4] Object-Oriented Database Systems: Strengths And Weaknesses.

Kim, Won, Journal of Object-Oriented Programming Focus On
ODBMS, (1992) pg. 27

[5] A Comparison of Object-Oriented Database Management Systems
for Engineering Applications. Ahmed, Shamim, et al., Massachusetts
Institute of Technology, Research Report R91-12, 1991

[6] Hitting the Relational Wall, Loomis, Mary E.S., Journal of Object-
Oriented Programming, January 1994, pp. 56- 59+

[7] http://databases.about.com/od/sql/a/sqlfundamentals_2.htm
[8] http://sourceforge.net/projects/pywebsvcs
[9] http://www.swig.org
[10] SAMGrid WEB services, S. Veseli, FNAL, CHEP06, Mumbai 2006
[11] http://www.unixodbc.org

Web Service Container

Interface Layer

Business Logic Layer

Query Object Layer

Database Layer

Python Interface

